ПАПIBIA UПIVERSITY
 OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES
 DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: BACHELOR OF COMPUTER SCIENCE	
QUALIFICATION CODE: 07BACS, 07BCMS, 07BCCS, 07BCCY	LEVEL: 6
COURSE CODE: ASP610/ASP611S	COURSE NAME: APPLIED STATISTICS \& PROBABILITY FOR IT
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 90

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	MR. ROUX, AJ
MODERATOR:	MR. E MWAHI

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. NON-PROGRAMABLE SCIENTIFIC CALCULATOR

ATTACHMENTS

1. Statistical Tables (Z-table)
2. $1 \times \mathrm{A} 4$ Graph Paper (to be supplied by Examinations Department)
3. Formulae Sheets

THIS QUESTION PAPER CONSISTS OF 5 PAGES (Including this front page)

QUESTION 1 [20]

1.1 Indicate whether each of the following variables is quantitative or qualitative, and identify the appropriate scale of measurement:
1.1.1) age of a child during an immunization
1.1.2) gender of an applicant attending an interview
1.1.3) the rank in which athletes obtained prices
1.1.4) the make of the cellphone which the child lost
1.1.5) percentage of students who passed the test
1.2) For each of the following random variables, indicate whether the data type is discrete or continuous
1.2.1) The weight of a bag of potatoes
1.2.2) The number of cars damaged in the accident
1.2.3) The distance a cyclist completed
1.2.4) The number of children with disabilities
1.2.5) The height of a ten-year old girl
1.3) [For each of these questions (1.3.1-1.3.5), Only provide the letter indicating your correct answer]
1.3.1 Which of the following measures of central tendency can reliably be used when dataset has outliers?
a) Mean
b) Median
c) Mode
d) All the above
1.3.2) A sample is
a) An experiment in the population
b) A subset of the population
c) A variable in the population
d) An outcome of the population
1.3.3) A parameter refers to
a) Calculation made from the population
b) A measurement that is made from the $\begin{array}{lll}\text { population } & \text { c) A value observed in the experiment } & \text { d) All of the above }\end{array}$
1.3.4) Weight is a \qquad variable
a) Continuous
b) Discrete
c) Ordinal
d) Interval
(1)
1.3.5) Researchers do sampling because of all of the following reasons except
a) Reduce cost
b) Can be done in a shorter time frame
c) Sampling is interesting
d) Easy to manage due to manageable logistics requirements

QUESTION 2 [30]

2.1) The Ministry of Education summarized the mathematics grades of ten thousand Grade 12 learners. The result was to categorize into the following categories A, B, C, D and E respectively. The following table shows data on mathematics results for a sample of 50 Grade 12 learners.

A	C	E	B	D	C	D	B	D	C
D	B	D	E	C	A	D	C	D	E
D	C	A	B	D	C	B	E	C	D
B	C	D	C	D	C	E	A	D	C
C	B	D	D	B	D	C	E	B	A

2.1.1) Construct the frequency distribution for the set of qualitative data in the table.
2.1.2) Construct the relative frequency distribution for the data set.
2.1.3) Construct the bar chart for the absolute frequency distribution for the data set.
2.2) The Namibian Cycling Federation (NCF) analyzed the exercise time (in hours) spent by a sample of 530 cyclists in preparation for the popular Desert Dash.

Exercise Time (hours)	Number of cyclists
$3-<7$	104
$7-<11$	138
$11-<15$	121
$15-<19$	95
$19-<23$	72

Use the data provided to calculate the:
2.2.1) mean,
2.2.2) median,
2.2.3) and modal exercise time

QUESTION 3 [15]

The data below shows the price (in millions) for a standard size plot in an upmarket residential suburb of Windhoek.

2012	2013	2014	2015	2016	2017	2018	2019	2020	2021

3.1) Determine the least squares trend line equation, using the sequential coding method with the first period coded as 1.
3.2) Use the trend line equation obtained in Question 3.1 to estimate the price for the same plot in 2010 and 2023.

QUESTION 4 [12]

A small scale manufacturing company operates a project that yields a cash flow having a normal distribution with a daily average of $N \$ 500$ and a standard deviation of $N \$ 60$.
4.1) Calculate and interpret the probability that the cash flow on a given day will be $\mathrm{N} \$ 560$ and more.
4.2) Calculate and interpret the probability that the cash flow on a given day will be $\mathrm{N} \$ 420$ and less.
4.3) Calculate the probability that the cash flow on a given day will lie between $N \$ 460$ and 540 (inclusive).

QUESTION 5 [13]

In a random sample of two hundred students, we found that one hundred and thirty eight of them have their own personal computers.
5.1) What part of this sample have their own personal computers
a) 0.96
b) 0.69
c) 1.38
d) none of the provided
5.2) When constructing a confidence interval estimate for the single unknown population proportion $\{\pi\}$ of the student population who have their own personal computers:-
5.2.1) What critical value will be used?
a) t
b) z
c) χ
d) none of the provided
(1)
5.2.2) Compute the Standard Error of estimate
a) 0.2139
b) 1.0695
c) 0.0327
d) none of the provided
(3)
5.3) If you construct a 90% degree of confidence interval estimate for the population proportion of successes.
5.3.1) What critical value will be used?
a) 1.645
b) 1.96
c) 2.575
d) none of the provided
5.3.2) What will be the lower limit (LL) for this confidence interval estimate?
a) 0.05379
b) 0.63620
c) 0.69
d) none of the provided
5.3.3) What will be the upper limit (UL) for this confidence interval estimate?
a) 0.69
b) 0.05379
c) 0.7438
d) none of the provided

Standard Normal Distilbution 1ables

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.9	. 00005	. 00005	. 00004	. 00004	. 00004	. 00004	. 00004	. 00004	. 00003	. 00003
-3.8	. 00007	. 00007	. 00007	. 00006	. 00006	. 00006	. 00006	. 00005	. 00005	. 00005
-3.7	. 00011	. 00010	. 00010	. 00010	. 00009	. 00009	. 00008	. 00008	. 00008	. 00008
-3.6	. 00016	. 00015	. 00015	. 00014	. 00014	. 00013	. 00013	. 00012	. 00012	. 00011
-3.5	. 00023	. 00022	. 00022	. 00021	. 00020	. 00019	. 00019	. 00018	. 00017	. 00017
-3.4	. 00034	. 00032	. 00031	. 00030	. 00029	. 00028	. 00027	. 00026	. 00025	. 00024
-3.3	. 00048	. 00047	. 00045	. 00043	. 00042	. 00040	. 00039	. 00038	. 00036	. 00035
-3.2	. 00069	. 00066	. 00064	. 00062	. 00060	. 00058	. 00056	. 00054	. 00052	. 00050
-3.1	. 00097	. 00094	. 00090	. 00087	. 00084	. 00082	. 00079	. 00076	. 00074	. 00071
-3.0	. 00135	. 00131	. 00126	. 00122	. 00118	. 00114	. 00111	. 00107	. 00104	. 00100
-2.9	. 00187	. 00181	. 00175	. 00169	. 00164	. 00159	. 00154	. 00149	. 00144	. 00139
-2.8	. 00256	. 00248	. 00240	. 00233	. 00226	. 00219	. 00212	. 00205	. 00199	. 00193
-2.7	. 00347	. 00336	. 00326	. 00317	. 00307	. 00298	. 00289	. 00280	. 00272	. 00264
-2.6	. 00466	. 00453	. 00440	. 00427	. 00415	. 00402	. 00391	. 00379	. 00368	. 00357
-2.5	. 00621	. 00604	. 00587	. 00570	. 00554	. 00539	. 00523	. 00508	. 00494	. 00480
-2.4	. 00820	. 00798	. 00776	. 00755	. 00734	. 00714	. 00695	. 00676	. 00657	. 00639
-2.3	. 01072	. 01044	. 01017	. 00990	. 00964	. 00939	. 00914	. 00889	. 00866	. 00842
-2.2	. 01390	. 01355	. 01321	. 01287	. 01255	. 01222	. 01191	. 01160	. 01130	. 01101
-2.1	. 01786	. 01743	. 01700	. 01659	. 01618	. 01578	. 01539	. 01500	. 01463	. 01426
-2.0	. 02275	. 02222	. 02169	. 02118	. 02068	. 02018	. 01970	. 01923	. 01876	. 01831
-1.9	. 02872	. 02807	. 02743	. 02680	. 02619	. 02559	. 02500	. 02442	. 02385	. 02330
-1.8	. 03593	. 03515	. 03438	. 03362	. 03288	. 03216	. 03144	. 03074	. 03005	. 02938
-1.7	. 04457	. 04363	. 04272	. 04182	. 04093	. 04006	. 03920	. 03836	. 03754	. 03673
-1.6	. 05480	. 05370	. 05262	. 05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.5	. 06681	. 06552	. 06426	. 06301	. 06178	. 06057	. 05938	. 05821	. 05705	. 05592
-1.4	. 08076	. 07927	. 07780	. 07636	. 07493	. 07353	. 07215	. 07078	. 06944	. 06811
-1.3	. 09680	. 09510	. 09342	. 09176	. 09012	. 08851	. 08691	. 08534	. 08379	. 08226
-1.2	. 11507	. 11314	. 11123	. 10935	. 10749	. 10565	. 10383	. 10204	. 10027	. 09853
-1.1	. 13567	. 13350	. 13136	. 12924	. 12714	. 12507	. 12302	. 12100	. 11900	. 11702
-1.0	. 15866	. 15625	. 15386	. 15151	. 14917	. 14686	. 14457	. 14231	. 14007	. 13786
-0.9	. 18406	. 18141	. 17879	. 17619	. 17361	. 17106	. 16853	. 16602	. 16354	. 16109
-0.8	. 21186	. 20897	. 20611	. 20327	. 20045	. 19766	. 19489	. 19215	. 18943	. 18673
-0.7	. 24196	. 23885	. 23576	. 23270	. 22965	. 22663	. 22363	. 22065	. 21770	. 21476
-0.6	. 27425	. 27093	. 26763	. 26435	. 26109	. 25785	. 25463	. 25143	. 24825	. 24510
-0.5	. 30854	. 30503	. 30153	. 29806	. 29460	. 29116	. 28774	. 28434	. 28096	. 27760
-0.4	. 34458	. 34090	. 33724	. 33360	. 32997	. 32636	. 32276	. 31918	. 31561	. 31207
-0.3	. 38209	. 37828	. 37448	. 37070	. 36693	. 36317	. 35942	. 35569	. 35197	. 34827
-0.2	. 42074	. 41683	. 41294	. 40905	. 40517	. 40129	. 39743	. 39358	. 38974	. 38591
-0.1	. 46017	. 45620	. 45224	. 44828	. 44433	. 44038	. 43644	. 43251	. 42858	. 42465
-0.0	. 50000	. 49601	. 49202	. 48803	. 48405	. 48006	. 47608	. 47210	. 46812	. 46414

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$
www.rit.edu/asc

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

	Z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	0.0	. 50000	. 50399	. 50798	. 51197	. 51595	. 51994	. 52392	. 52790	. 53188	. 53586
*- Nax $^{\text {a }}$	0.1	. 53983	. 54380	. 54776	. 55172	. 55567	. 55962	. 56356	. 56749	. 57142	. 57535
4,	0.2	. 57926	. 58317	. 58706	. 59095	. 59483	. 59871	. 60257	. 60642	. 61026	. 61409
	0.3	. 61791	. 62172	. 62552	. 62930	. 63307	. 63683	. 64058	. 64431	. 64803	. 65173
	0.4	. 65542	. 65910	. 66276	. 66640	. 67003	. 67364	. 67724	. 68082	. 68439	. 68793
	0.5	. 69146	. 69497	. 69847	. 70194	. 70540	. 70884	. 71226	. 71566	. 71904	. 72240
	0.6	. 72575	. 72907	. 73237	. 73565	. 73891	. 74215	. 74537	. 74857	. 75175	. 75490
	0.7	. 75804	. 76115	. 76424	. 76730	. 77035	. 77337	. 77637	. 77935	. 78230	. 78524
	0.8	. 78814	. 79103	. 79389	. 79673	. 79955	. 80234	. 80511	. 80785	. 81057	. 81327
	0.9	. 81594	. 81859	. 82121	. 82381	. 82639	. 82894	. 83147	. 83398	. 83646	. 83891
	1.0	. 84134	. 84375	. 84614	. 84849	. 85083	. 85314	. 85543	. 85769	. 85993	. 86214
	1.1	. 86433	. 86650	. 86864	. 87076	. 87286	. 87493	. 87698	. 87900	. 88100	. 88298
	1.2	. 88493	. 88686	. 88877	. 89065	. 89251	. 89435	. 89617	. 89796	. 89973	. 90147
	1.3	. 90320	. 90490	. 90658	. 90824	. 90988	. 91149	. 91309	. 91466	. 91621	. 91774
	1.4	. 91924	. 92073	. 92220	. 92364	. 92507	. 92647	. 92785	. 92922	. 93056	. 93189
	1.5	. 93319	. 93448	. 93574	. 93699	. 93822	. 93943	. 94062	. 94179	. 94295	. 94408
	1.6	. 94520	. 94630	. 94738	. 94845	. 94950	. 95053	. 95154	. 95254	. 95352	. 95449
	1.7	. 95543	. 95637	. 95728	. 95818	. 95907	. 95994	. 96080	. 96164	. 96246	. 96327
	1.8	. 96407	. 96485	. 96562	. 96638	. 96712	. 96784	. 96856	. 96926	. 96995	. 97062
	1.9	. 97128	. 97193	. 97257	. 97320	. 97381	. 97441	. 97500	. 97558	. 97615	. 97670
	2.0	. 97725	. 97778	. 97831	. 97882	. 97932	. 97982	. 98030	. 98077	. 98124	. 98169
	2.1	. 98214	. 98257	. 98300	. 98341	. 98382	. 98422	. 98461	. 98500	. 98537	. 98574
	2.2	. 98610	. 98645	. 98679	. 98713	. 98745	. 98778	. 98809	. 98840	. 98870	. 98899
	2.3	. 98928	. 98956	. 98983	. 99010	. 99036	. 99061	. 99086	. 99111	. 99134	. 99158
	2.4	. 99180	. 99202	. 99224	. 99245	. 99266	. 99286	. 99305	. 99324	. 99343	. 99361
	2.5	. 99379	. 99396	. 99413	. 99430	. 99446	. 99461	. 99477	. 99492	. 99506	. 99520
	2.6	. 99534	. 99547	. 99560	. 99573	. 99585	. 99598	. 99609	. 99621	. 99632	. 99643
	2.7	. 99653	. 99664	. 99674	. 99683	. 99693	. 99702	. 99711	. 99720	. 99728	. 99736
	2.8	. 99744	. 99752	. 99760	. 99767	. 99774	. 99781	. 99788	. 99795	. 99801	. 99807
	2.9	. 99813	. 99819	. 99825	. 99831	. 99836	. 99841	. 99846	. 99851	. 99856	. 99861
	3.0	. 99865	. 99869	. 99874	. 99878	. 99882	. 99886	. 99889	. 99893	. 99896	. 99900
	3.1	. 99903	. 99906	. 99910	. 99913	. 99916	. 99918	. 99921	. 99924	. 99926	. 99929
	3.2	. 99931	. 99934	. 99936	. 99938	. 99940	. 99942	. 99944	. 99946	. 99948	. 99950
	3.3	. 99952	. 99953	. 99955	. 99957	. 99958	. 99960	. 99961	. 99962	. 99964	. 99965
	3.4	. 99966	. 99968	. 99969	. 99970	. 99971	. 99972	. 99973	. 99974	. 99975	. 99976
	3.5	. 99977	. 99978	. 99978	. 99979	. 99980	. 99981	. 99981	. 99982	. 99983	. 99983
	3.6	. 99984	. 99985	- 99985	. 99986	. 99986	. 99987	. 99987	. 99988	. 99988	. 99989
	3.7	. 99989	. 99990	. 99990	. 99990	. 99991	. 99991	. 99992	. 99992	. 99992	. 99992
	3.8	. 99993	. 99993	. 99993	. 99994	. 99994	. 99994	. 99994	. 99995	. 99995	. 99995
	3.9	. 99995	. 99995	. 99996	. 99996	. 99996	. 99996	. 99996	. 99996	. 99997	. 99997

APPENDIX A

Populationmean, raw data

$$
\mu=\frac{\sum x}{N}
$$

Sample mean, raw data

$$
\bar{x}=\frac{\sum x}{n}
$$

Weighted mean
$\overline{X_{w}}=\frac{w_{1} X_{1}+w_{2} X_{2}+\ldots+w_{n} X_{n}}{w_{1}+w_{2}+\ldots+w_{n}}$

Geometricmean

$$
G M=\sqrt[n]{\left(X_{1}\right)\left(X_{2}\right)\left(X_{3}\right) \cdots\left(x_{n}\right)}
$$

Geometricmean rate of increase

$$
\mathrm{GM}=\sqrt[n]{\frac{\text { Value at end of period }}{\text { Value at start of period }}}-1.0
$$

Sample mean grouped data

$$
\bar{x}=\frac{\sum f x}{n}
$$

Median of grouped data

$$
\text { Median }=L+\frac{\frac{\mathrm{n}}{2}-\mathrm{CF}}{£} \text { (Class width) }
$$

Mean deviation

$$
M D=\frac{\sum|X-\bar{X}|}{n}
$$

Linear regression equation

$$
Y=a+b X
$$

Sample variance for raw data

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}
$$

Sample variance, raw data computational form

$$
S^{2}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}
$$

Sample standard deviation, raw data

$$
S=\sqrt{\frac{\sum x^{2}-\frac{(\Sigma x)^{2}}{n}}{n-1}}
$$

Sample standard deviation, grouped data

$$
S=\sqrt{\frac{\sum £ X^{2}-\frac{(\Sigma £ x)^{2}}{n}}{n-1}}
$$

Coefficient of variation

$$
c V=\frac{s}{x}(100)
$$

Location of percentile

$$
L_{p}=(n+1) \frac{p}{100}
$$

Pearson's Correlation coefficient
$r=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{\sqrt{\left[n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}\right]\left[n\left(\sum Y^{2}\right)-\left(\sum Y\right)^{2}\right]}}$

Correlation test of hypothesis

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

Population standard deviation for raw data

$$
\sigma=\sqrt{\frac{\sum(X-\mu)^{2}}{N}}
$$

Population variance for raw data

$$
\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}
$$

Slope of regression line

$$
b=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}}
$$

Intercept of a regression line

$$
a=\frac{\sum Y}{n}-b\left(\frac{\sum X}{n}\right)
$$

The Range

Range = highest - lowest

APPENDIX B: ADDITIONAL FORMULAE

Mode $=L+\left(\frac{d_{1}}{d_{1}+d_{2}}\right) \times c$
position $Q_{j}=\frac{j n}{4}$
value $\quad Q_{j}=L+\frac{\left.\left(\frac{j n}{4}-F\right)\right) \times c}{f_{Q_{j}}}$
position $P_{j}=\frac{j n}{100}$
value $\quad P_{j}=L+\frac{\left.\left(\frac{j n}{100}-F\right)\right) \times c}{f_{P_{j}}}$

$$
\begin{array}{lll}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} & P(x)=\frac{n!}{x!(n-x)!} \pi^{x}(1-\pi)^{n-x} & P(\mathrm{x})=\frac{\lambda^{x} e^{-\lambda}}{x!} \\
z=\frac{x-\mu}{\sigma} & z_{\text {calc }}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} & t_{\text {calc }}=\frac{\bar{x}-\mu}{s / \sqrt{n}}
\end{array}
$$

$$
z_{\text {calc }}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

$$
t_{\text {calc }}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{(n-1) s_{1}^{2}+(n-1) s_{2}^{2}}{n_{1}+n_{2}-1}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} \quad z_{\text {calc }}=\frac{p_{A}-p_{B}}{\sqrt{(p \times q)\left(\frac{1}{n_{A}}+\frac{1}{n_{B}}\right)}} \quad p=\frac{n_{A} p_{B}+n_{B} p_{A}}{n_{A}+n_{B}} \quad q=1-p
$$

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}
$$

$$
F_{V}=P_{V}(1+i n)
$$

$$
F_{V}=P_{V}(1+i)^{n}
$$

$$
r=(1+i)^{m}-1
$$

$$
D=B(1-i)^{n}
$$

$$
P=\frac{A}{(1+i)^{n}} \quad P V=\frac{P(1+i)^{n}}{(1+j)^{n}} \quad I R R=\frac{N_{1} I_{2}-N_{2} I_{1}}{N_{1}-N_{2}}
$$

